Senin, 10 Desember 2007

Multivibrator Astabil

1. Multivibrator Astabil

Multivibrator adalah pembangkit pulsa segi empat. Suatu multivibrator astabil biasa disebut sebagai free running multivibrator. Gambar 15 menunjukkan bentuk sinyal yang dihasilkan oleh multivibrator astabil.


Gambar 15. Bentuk Pulsa Astabil.

IC yang sering digunakan untuk membentuk multivibrator astabil adalah IC 555. Salah satu aplikasi multivibrator astabil adalah sebagai Pulse Width Modulation, aplikasi ini digunakan untuk mengatur kecepatan motor DC.

Gambar 16 menunjukkan rangkaian multivibrator astabil menggunakan IC 555.[1]




Gambar 16. Rangkaian Multivibrator Astabil Menggunakan IC 555

Waktu Ton dan Toff dapat ditentukan menggunakan rumus berikut ini : [2]

Ton = 0.69 (Ra + Rb) C

Toff = 0.69 Rb C


[1] Darold Wobschall, Circuit Design For Electronic Instrumentation, (USA: McGraw-Hill, 1987), hal. 192.

[2] Ibid.,hal.192.

Kamis, 06 Desember 2007

Motor Langkah (Stepper Motor)

Motor langkah merupakan suatu jenis motor yang dapat digunakan untuk memindahkan sebuah benda (beban) dengan jarak perpindahan yang kecil. Berbeda halnya dengan motor-motor lain, yang bergerak dengan putaran yang kontinyu/mulus, motor langkah bergerak dengan putara n yang kaku. motor langkah bergerak dari posisi berikutnya seperti gerak melangkah (step). Karena itulah motor ini dinamakan motor langkah (stepper motor).
Motor langkah banyak sekali digunakan pada aplikasi-aplikasi elektronik seperti printer, floppy drive, cdrom drive dan banyak lagi alat-alat yang lain. Berikut contoh salah satu jenis gambar dari motor langkah.
Gambar 1. Motor langkah

Motor langkah yang umum digunakan mempunyai jangkauan langkah berputar antara 0,9 derajat sampai 30 derajat. Motor-motor tersebut adalah motor langkah dua atau empat fase. Secara teoritis, sebuah motor langkah berukuran kecil dapat digerakkan langsung oleh mikroprosesor atau mikrokontroler. Dalam kenyataannya, arus dan tegangan yang dapat dikeluarkan oleh alat pemroses tadi masih terlalu kecil. Sebagai perbandingan, gerbang-gerbang logika tipe TTL hanya mampu mengeluarkan arus dalam orde mili-ampere dan tegangan antara 2 sampai 5 V. Sementara itu untuk menggerakkan motor langkah dibutuhkan arus yang cukup besar (dalam orde ampere) dengan tegangan berkisar 5-24 V.
Untuk mengatasi masalah tersebut, diperlukan sebuah piranti tambahan yang dapat memenuhi kebutuhan arus dan tegangan tadi yaitu dengan menambahkan rangkaian penggerak seperti transistor yang dipasang secara Darlington, rangkaian penggerak gabungan atau menggunakan IC-IC yang kompatibel. Berikut skema-skema rangkaian penggerak motor langkah.

Gambar 2. Rangkaian interface motor langkah dengan transistor

Gambar 3. Skema Gabungan penggerak motor langkah

Pada skema diatas masing-masing mempunyai kelebihan dan kekurangan. Jika ingin murah tapi kita harus buat program tambahan seperti waktu tunda untuk pergeseran pulsanya pada setiap pin kaki motor langkah dan program looping atau motor langkah ingin diputar berapa derajat, sedangkan jika menggunakan skema gabungan pada gambar 3 kita hanya mengatur control mode-nya ingin diputar kekiri atau kekanan (lihat data sheet 74LS194) dan untuk waktu tundanya diatur pada clock yang dibangkitkan oleh IC 555 kita bisa atur pada potensio yang digunakan. Selain I/O lebih sedikit dibanding menggunakan transistor, cukup dua pin control yang kita kendalikan. Pada skema aslinya ada rangkaian tambahan menggunakan IC 7474 untuk mengatur putar kanan dan kiri, tapi jika menggunakan skema yang diatas juga dapat digunakan dan telah dibuktikan. Lihat lengkap skema penggerak gabungan motor langkah.

Fase-fase Motor Langkah
Sebuah motor langkah digerakkan dari posisi berikutnya dengan mengubah arus yang terhubung ke masing-masing fase. pengubahan arus tersebut mempunyai pola/kombinasi tertentu. Berikut ini adalah untuk menggerakkan sebuah motor langkah 4-fase.

Rabu, 21 November 2007

Driver MotorDC dengan L298 & L293 (lanjutan)

Selain menggunakan IC L298 Anda juga bisa menggunakan IC ini sebagai driver atau penggerak motor DC dari 6-36 V. Mengenai fitur dari IC ini bisa dilihat pada datasheet yang tersedia. Tidak jauh berbeda dengan L298, IC ini diaktifkan melalui pin Enable. Untuk skema rangkaian bisa Anda lihat seperti gambar dibawah ini.


Jika Anda bandingkan skema yang direkomendasikan ST datasheet menggunakan beberapa dioda yang dipasang pada output motor DC, ini menghindari adanya arus terlambat yang terjadi pada lilitan motor sehingga IC dalam keadaan aman terkendali ( buset kaya apaan aja yach...), tapi setelah dicoba sama beberapa teman saya dengan menggunakan skema rangkaian diatas tetap bisa dan lancar tapi kelemahannya IC jadi cepat panas.
Selamat mencoba, kalo ada masalah bagi-bagi saya yach!!! Kali aja bisa kasih solusi>>>dan banyak pengalaman.

Jumat, 16 November 2007

Driver Motor DC dengan L298 & L293

Ada beberapa macam driver motor DC yang biasa kita pakai seperti menggunakan relay yang diaktifkan dengan transistor sebagai saklar, namun yang demikian dianggap tidak efesien dan terlalu ribet "repot" dalam pengerjaan hardware-nya. Dengan berkembangnya dunia IC, sekarang sudah ada H Bridge yang dikemas dalam satu IC dimana memudahkan kita dalam pelaksanaan hardware dan kendalinya apalagi jika menggunakan mikrokontroler, saya rasa akan lebih mudah lagi penggunaannya. IC yang familiar seperti IC L298 dan L293, kedua IC ini memiliki kelebihan dan kekurangan masing-masing. Untuk lebih jelasnya Anda bisa lihat datasheet dari masing-masing IC tersebut.
Modul yang menggunakan IC driver L298 yang memiliki kemampuan menggerakkan motor DC sampai arus 4A dan tegangan maksimum 46 VoltDC untuk satu kanalnya. Rangkaian driver motor DC dengan IC L298 diperlihatkan pada gambar 1. Pin Enable A dan B untuk mengendalikan jalan atau kecepatan motor, pin Input 1 sampai 4 untuk mengendalikan arah putaran. Pin Enable diberi VCC 5 Volt untuk kecepatan penuh dan PWM (Pulse Width Modulation) untuk kecepatan rotasi yang bervariasi tergantung dari level highnya. Ilustrasinya ditunjukkan pada gambar 2. Gambar 1. Rangkaian Driver motor DC dengan L298


Gambar 2. ilustrasi Timing enable pada IC

Rangkaian ini sangat berguna dan efesien sekali jika kita ingin membangun suatu mobile robot seperti yang dipergunakan dalam kontes robot indonesia (KRI) dan kontes robot cerdas indonesia (KRCI), paling tidak rangkaian ini sudah saya buktikan pada tugas kuliah saya dan berhasil dengan baik, sehingga kami satu kelompok mendapat nilai bagus. Waktu itu kita membuat aplikasi Robot Pemotong Rumput, yang perlu diperhatikan selanjutnya adalah roda yang kita gunakan. Usahakan roda tersebut presisi dari bentuk dan pemasangan pada robot karena ini berpengaruh pada jalannya robot.

Selamat Mencoba Yach.... untuk L293 menyusul OK.

Rabu, 14 November 2007

Dasar-dasar transistor




Transistor
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Berbagai macam Transistor (Dibandingkan dengan pita ukur centimeter)
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Cara kerja semikonduktor
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.


Cara kerja transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.


Jenis-jenis transistor

Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
Polaritas: NPN atau N-channel, PNP atau P-channel
Maximum kapasitas daya: Low Power, Medium Power, High Power
Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

BJT
BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

FET
FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.


download pdf file here.

Rabu, 03 Oktober 2007

Mikro Selamat


Selamat Datang
Mari belajar Mikrokontroller !

Mikrokontroler saat ini tidak asing lagi dalam dunia elektronika, hampir semua peralatan elektronik dewasa ini menggunakan perangkat ini, mikrokontroller merupakan pengendali utama dalam peralatan elektronik saat ini, maka mikrokontroller merupakan suatu hal yang penting untuk di pelajari bagi mereka yang berkecimpung dalam dunia elektronika.
Mikrokontroller yang dibahas disini adalah mikrokontroller buatan ATMEL yang mudah ditemui dipasaran indonesia, yaitu : AT89S51, AT89S52, AT89S8252, AT89C2051, AT89C4051, AT89C51, AT89C52
AT89S51, AT89S52, AT89S8252 Mempunyai kemampuan serial downloading atau lebih dikenal dengan istilah In System Programming (ISP) sehingga mikrokontroler langsung dapat diprogram pada rangkaiannya tanpa harus mencabut IC untuk diprogram, Programmer ISP dapat dibuat menggunakan beberapa resistor via paralel port komputer sehingga bagi mereka yang belum memiliki programmer dapat tetap berkesperimen menggunakan mikrokontroller ini dengan biaya yang murah.
Pemrogramman AT89XX pada situs ini menggunakan bahasa C atas tersedianya SDCC ( Small Device C Compiler, C compiler gratis untuk pemrograman mikrokontroller) sehingga pemrograman akan lebih mudah dibandingkan penggunaan bahasa assembly.
Selamat Belajar Mikrokontroller.

Robot Avoider

ROBOT "AVOIDER"


Written by Administrator
Sunday, 17 June 2007
St. Deddy Susilo
www.pcr.ac.id

Topik yang kami buat berbasis mikrokontroler keluarga MCS-51, dalam hal ini kami gunakan AT89S51 buatan ATMEL. Kelebihan tipe 89SXX daripada pendahulunya 8031/51 yaitu didalam chip sudah terdapat Flash Memory yang dapat diprogram sebesar 4Kbytes, 128 x 8 bit RAM internal. Jadi dengan menggunakan mikro tipe ini akan didapat desain yang cukup kompak dan pemrogramannya relatif lebih mudah. Desain yang kami buat terdiri dari beberapa bagian yaitu:
Modul Mikrokontroler 89S51 + Regulator.
Modul Penggerak Motor DC.
Modul Penggerak Motor Stepper.
Modul Transceiver Infra Red + Pendeteksi Benturan Samping (Limit Switch).
Modul Penyuara.
Gambar 1. Robot Penghindar Halangan

Penjelasan Modul
1. Modul Mikrokontroler AT89SXX + Regulator.
Berikut contoh skematik dari modul tersebut. Komponen Modul Mikrokontroler 89CXX
Pasif : Resistor 8K2 W, array 10K W 9 pin, Crystal 12 MHz, kapasitor 30 pF, 10uF, 100 uF, 1000uF, switch.
Semikonduktor : AT89S51, LM7805.
Battery charger 9 VoltDC 700mAH
Modul yang ditunjukkan pada gambar 2 berfungsi mengendalikan seluruh proses pekerjaan sistem robot ini dengan cara penanaman instruksi dalam Flash PEROM didalam chip 89S51. Bahasa yang dipergunakan adalah assembler, bahasa C dengan bantuan Compiler C (Franklin C, Keil C, SDCC atau yang lain). Baterai menggunakan baterai yang dapat diisi ulang sebesar 700mAH dengan asumsi bila sistem memakai arus 0,75 A akan dapat bertahan selama satu jam. LM7805 digunakan untuk meregulasi tegangan dan arus dari baterai sekaligus menyesuaikan level tegangan chip 89S51 serta piranti lain yang akan dipaparkan selanjutnya.
Gambar 2. Modul Mikrokontroler AT89S51
2. Modul Penggerak Motor DC
Komponen Modul Penggerak Motor DC
Pasif : Resistor 1 ohm 5 watt untuk pembatas arus dan sensing arus.
Semikonduktor : IC Driver Motor L298 buatan ST Microelectronic
2 buah motor DC 9 Volt 2400 RPM dengan pengurang kecepatan dan penguat torsi
Gambar 3. Modul Penggerak Motor DC
Modul ini menggunakan IC driver L298 yang memiliki kemampuan menggerakkan motor DC sampai arus 2A dan tegangan maksimum 40 VoltDC untuk satu kanalnya. Pin Enable A dan B untuk mengendalikan jalan atau kecepatan motor, pin Input 1 sampai 4 untuk mengendalikan arah putaran. Pin Enable diberi VCC 5 Volt untuk kecepatan penuh dan PWM (Pulse Width Modulation) untuk kecepatan rotasi yang bervariasi tergantung dari level highnya. Ilustrasinya ditunjukkan pada gambar 4.
Gambar 4. Ilustrasi Pulse Width Modulation
Dari gambar 4 dapat dijelaskan jika dikehendaki kecepatan penuh maka diberikan 5 Volt konstan, jika dikehendaki kecepatan bervariasi maka diberikan pulsa yang lebar high dan low-nya bervariasi. Satu periode pulsa memiliki waktu yang sama sehingga dalam contoh diatas, kecepatan motor akan berubah dari setengah kecepatan penuh menjadi mendekati kecepatan penuh. Biasanya digunakan lebar pulsa dalam beberapa milisekon misalnya 2 ms. Input untuk motor servo kanan adalah input 1 (C) dan 2 (D), direction-nya dapat dilihat pada tabel 1.
Tabel 1. Pengaturan IC driver motor
Berikut didalam IC L298 mengapa pengendaliannya sesuai dengan tabel 1.
Gambar 5. Ilustrasi Pengendalian Motor didalam IC Driver Motor
Didalam chip L298, untuk mengendalikan arah putaran motor digunakan metode bridge-H dari kombinasi transistor, jadi dengan metode demikian arus yang mengalir kemotor polaritasnya dapat diatur dengan memberikan logika ke transistor Q1 sampai Q4. Pengaturannya seperti tabel kebenaran disamping gambar 5. Kondisi high untuk semua input tidak diijinkan sebab akan mengakibatkan semua transistor aktif dan akan merusakkan transistor karena secara otomatis arus dari kolektor Q1 dan Q2 langsung mengalir ke Q2 san Q3 sehingga arus sangat besar tanpa melalui beban motor DC.
Berikut contoh penggalan pengendalian motor dengan bahasa assembly (contoh robot akan berjalan kedepan X meter)
subrutin-1
Delay diatas menggunakan fasilitas timer dalam chip 89C51. Untuk lamanya delay dapat divariasikan sendiri dengan proses looping atau perulangan. Jika dikehendaki robot berputar sesuai porosnya maka dapat dicoba penggalan source code sebagai berikut:
Subrutin-2
Fungsi Rsense1 dan 2 adalah untuk monitor arus jika diperlukan keperluan umpan balik untuk kestabilan system, contoh menjaga kestabilan putaran motor dengan memberikan umpan balik negatif arus ke pengendali mikro, dapat dengan ADC sebagai interface-nya.
3. Modul Penggerak Motor Stepper
Komponen Modul Penggerak Motor Stepper
Pasif : Resistor 1K, 12K
Semikonduktor : Transistor 2SD313 + heatsink
Motor Stepper
Motor stepper yang kami gunakan adalah motor stepper yang ada dalam floppy disk drives yang sudah jarang dipakai lagi (ukuran 5¼ inch). Berikut skematik diagram penggerak motor stepper:
Gambar 6. Motor stepper dan penggeraknya
Untuk menggerakkan motor stepper masing-masing titik kumparan harus diberikan arus secara bervariasi, pada contoh diatas, titik A, B, C dan D diatur seperti pada contoh penggalan source code dibawah ini.
subrutin-3
Urutan data untuk putar kiri adalah 1000-0100-0010-0001, sehingga untuk putar kanan adalah sebaliknya yaitu 0001-0010-0100-1000. Delay tengok diatur kira-kira sebesar 5-20 msekon. Digunakan transistor adalah untuk interface antara mikro dan stepper, arus dari mikro tak akan sanggup langsung mengendalikan motor stepper. Transistor yang digunakan adalah transistor yang cocok untuk penguat daya menengah dengan bandwidth yang cukup lebar (2SD313). Melalui pengukuran diketahui tiap step dari stepper terhadap common mempunyai nilai hambatan sebesar 68 ohm, sehingga jika sumber tegangan diberi 5 voltDC maka nilai arus yang mengalir ke tiap step dengan mengasumsikan transistor saturasi adalah I = V/R = 5 V / 68 ohm = 73 mA.
4. Modul Transceiver Infra Red + Pendeteksi Benturan Samping (Limit Switch).
Modul Transmitter
Cara kerja IR transmitter dapat dilihat dari timing diagram dibawah ini : Sinyal IR disetting sebesar 30 - 50 KHz, sinyal data kita pakai untuk mengendalikan ada atau tidaknya pancaran sinyal infra merah. Jadi data dan sinyal infra merah yang akan dipancarkan perlu dimodulator terlebih dahulu. Maksud dari frekuensi kerja IR Led adalah supaya pancarannya dapat jauh dan kurang terpengaruh noise dari luar.
Gambar 7. Ilustrasi Komunikasi Data Sinyal Infra Merah
Gambar 8. Untai Penghasil Osilasi 30 -40 kHz dan Modulator
Modul Receiver Infra Merah
Di bawah ini adalah gambar untai dari penerima infra merah yang dapat menangkap sinyal IR dengan frekuensi 30 - 50 KHz. Setelah diterima dalam bentuk pulsa maka diubah menjadi tegangan DC rata-ratanya yang kemudian akan dimasukkan ke komparator tegangan LM324. Out Receiver adalah active low yaitu bila ada sinyal IR hasil pantulan yang tertangkap cukup kuat akan membuat output opamp menjadi low. Cara selain ini juga dapat digunakan, untuk hasil yang lebih tepat dengan cara menghitung jumlah pulsa yang tertangkap di receiver. Untai yang sudah direalisasikan dapat mengindera sinar Infra Merah dengan jarak 0 hingga 15 meter, dengan menyetel amplitudo dari keluaran pulsa dari modulasi (penggabungan ) sinyal carrier dengan data. Receiver yang pernah dicoba adalah sensor receiver Infra Merah untuk VCD player yang sudah memiliki keluaran dengan level TTL ( +5 V dan 0 V).
Gambar 9. Modul Infra Merah dan Komparator
Modul Limit Switch
Untuk untai pendeteksi benturan kanan dan kiri digunakan limit switch seperti gambar dibawah ini.
Gambar 10. Untai pendeteksi halangan di depan dan samping
Untuk mengenali kanan atau kiri maka dari kedua switch diumpankan lagi ke port mikrokontroler. Output dari gerbang AND untuk limit switch diumpankan lagi ke gerbang AND untuk dibandingkan logikanya dengan output receiver, dan hasil akhirnya diumpankan ke Port3.2 sebagai tanda ada halangan. Jika ada halangan didepan maka mikro segera memerintahkan untuk menyimpan data halangan di kanan, kiri dan depan, yang kemudian disimpan di memori, contoh penggalan source code-nya sebagai berikut: (mikro memerintahkan juga motor stepper untuk bergerak dengan 180 derajat kebebasan).
subrutin-4
5. Modul Penyuara
Untuk modul penyuara ini hanyalah tambahan fitur. Kami gunakan untuk memberikan sinyal ketika ada halangan, ada benturan kanan-kiri dan tanda bahwa semua arah sudah tertutup bagi robot (robot tidak bisa menemukan jalan keluar). Digunakan interrupt timer supaya proses bunyi dan proses sistem dapat berjalan bersamaan. Gambar untainya :
Gambar 11. Modul penyuara
Kegunaan 74LS04 adalah untuk buffer arus ke speaker karena bila langsung ke mikro maka arus dari mikro akan drop (jatuh) akibat beban yang besar (speaker). Penggalan source code untuk membunyikan speaker:
subrutin-5
Untuk modul yang lain dapat ditambahkan sendiri misalnya modul sensor pendeteksi panas, pencari cahaya, pencari sumber suara, pengikut lintasan, pendeteksi arah gelombang RF yang terkuat dan lain sebagainya. Untuk proses berjalannya robot tergantung dari kreatifitas perancang, untuk itu kami tidak mencantumkan lengkap source code-nya, tetapi kami akan berikan contoh flowchart jalannya robot.
Gambar 12. Flowchart Sistem Robot Avoider
KESIMPULAN
Sistem robot yang dibangun cukup sederhana tetapi cukup menarik untuk dipelajari lebih lanjut. Sistem robot ini sangat berguna dan banyak kita jumpai di industri. Sebagai contoh, conveyor di sebuah pabrik mie instant adalah salah satu contoh bentuk robot industri yang populer. Ilmu robotika merupakan gabungan dari teknologi mekanik presisi, perangkat keras elektronika dan komputer, perangkat lunak, sistem penginderaan atau sensor, dan dapat dikatakan merupakan gabungan dari banyak ilmu elektronika dan komputer, serta mesin.
REFERENSI
[1] Miller, Merl K. ; Winkless, Nelson ; Bosworth, Joe, The Personal Robot Navigator, Robot Press, Conifier, Colorado. Printed in United States of America. 1998.
[2] MacKenzie, I. Scott, The 8051 Microcontroller, Prentice Hall. 1995.